CC - IX: ELEMENTS OF MODERN PHYSICS (Credits: Theory-04, Practicals-02) F.M. = 75 (Theory - 40, Practical - 20, Internal Assessment - 15) Internal Assessment [Class Attendance (Theory) – 05, Theory (Class Test/ Assignment/ Seminar) – 05, Practical (Sessional Viva-voce) - 05] Theory: 60 Lectures Planck's quantum, Planck's constant and light as a collection of photons; Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with electrons. Probability. Wave amplitude and wave functions. (14 Lectures) Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Derivation from Wave Packets impossibility of a particle following a trajectory, Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle- application to virtual particles and range of an interaction. (5 Lectures) Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; Probability and probability current densities in one dimension. (10 Lectures) One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as example; Quantum mechanical scattering and tunnelling in one dimensionacross a step potential & rectangular potential barrier. (10 Lectures) Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. (6 Lectures) Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. (8 Lectures) Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions). (3 Lectures) 31 Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser.Basic lasing. (4 Lectures)